Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension.
نویسندگان
چکیده
Reduced production of nitric oxide (NO) in the cirrhotic liver results from a defect in hepatic endothelial cell nitric oxide synthase (ecNOS) and appears to contribute to the high intrahepatic resistance and portal hypertension typical of cirrhosis. Therefore, we postulated that targeting a heterologous NOS isoform to sinusoidal endothelial cells or other perisinusoidal cells, such as hepatic stellate cells, would counter the defect in NO production and reduce resistance to blood flow. Recombinant adenovirus (Ad) carrying the neuronal NOS gene (nNOS) targeted liver sinusoidal endothelial cells, stellate cells, and hepatocytes more efficiently than the corresponding cells in cirrhotic livers, but transduction rates were substantial even in cirrhotic animals. Expression of nNOS in each liver cell type, whether from normal or injured liver, caused increased NO production and inhibited endothelin-1-induced contractility of perisinusoidal stellate cells. Finally, in 2 different in vivo models of cirrhosis and portal hypertension, transduction of livers with recombinant Ad.nNOS significantly reduced intrahepatic resistance and portal pressure. The data highlight the feasibility of gene transfer to diseased liver and hepatic cells and demonstrate the potential of a novel therapy for portal hypertension caused by cirrhosis.
منابع مشابه
LIVER DISEASE In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats
Background: Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl4) cirrhotic rat liver. Aims: T...
متن کاملIn vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats.
BACKGROUND Portal hypertension in cirrhosis results from enhanced intrahepatic resistance to an augmented inflow. The former is partly due to an imbalance between intrahepatic vasoconstriction and vasodilatation. Enhanced endothelin-1 and decreased activity of hepatic constitutive endothelial nitric oxide synthase (NOS 3) was reported in carbon tetrachloride (CCl(4)) cirrhotic rat liver. AIMS...
متن کاملMinocycline attenuates cirrhotic cardiomyopathy and portal hypertension in a rat model: Possible involvement of nitric oxide pathway
Objective(s): An increase in nitric oxide (NO) production has been reported in cirrhotic cardiomyopathy and, portal hypertension. Since minocycline has been shown to inhibit NO overproduction, we aimed to examine its role in a rat model of CCl4-induced cirrhotic cardiovascular complications. Materials and Methods: Portal pressure and inotropic responsiveness of isolated papillary muscles to is...
متن کاملLow NO bioavailability in CCl4 cirrhotic rat livers might result from low NO synthesis combined with decreased superoxide dismutase activity allowing superoxide-mediated NO breakdown: A comparison of two portal hypertensive rat models with healthy controls
BACKGROUND: In cirrhotic livers, the balance of vasoactive substances is in favour of vasoconstrictors with relatively insufficient nitric oxide. Endothelial dysfunction has been documented in cirrhotic rat livers leading to a lower activity of endothelial nitric oxide synthase but this might not be sufficient to explain the low nitric oxide presence. We compared the amount of all nitric oxide ...
متن کاملSuperoxide dismutase gene transfer reduces portal pressure in CCl4 cirrhotic rats with portal hypertension.
BACKGROUND Increased intrahepatic vascular tone in cirrhosis has been attributed to a decrease of hepatic nitric oxide (NO) secondary to disturbances in the post-translational regulation of the enzyme eNOS. NO scavenging by superoxide (O(2)(-)) further contributes to a reduction of NO bioavailability in cirrhotic livers. AIM To investigate whether removing increased O(2)(-) levels could be a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 105 6 شماره
صفحات -
تاریخ انتشار 2000